题目内容
设函数f′(x)=x2+3x-4,则y=f(x+1)的单调减区间为( )
分析:已知函数f′(x),可以求出f′(x+1),要求y=f(x+1)的单调减区间,令f′(x+1)<0即可,求不等式的解集;
解答:解:∵函数f′(x)=x2+3x-4,
f′(x+1)=(x+1)2+3(x+1)-4=x2+5x,
令y=f(x+1)的导数为:f′(x+1),
∵f′(x+1)=x2+5x<0,解得-5<x<0
∴y=f(x+1)的单调减区间:(-5,0);
故选B.
f′(x+1)=(x+1)2+3(x+1)-4=x2+5x,
令y=f(x+1)的导数为:f′(x+1),
∵f′(x+1)=x2+5x<0,解得-5<x<0
∴y=f(x+1)的单调减区间:(-5,0);
故选B.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|