题目内容
设an是(1+x)n的展开式中x2项的系数(n=2,3,4,…),则极限
(
+…+
)=______.
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| an |
二项展开式的通项Tr+1=Cnrxr
令r=2可得,an=Cn2=
+
+…+
=2[
+
+…+
]
=2(1-
+
-
+…
-
)
=2(1-
)
(
+…+
)=
(2-
)=2
故答案为:2
令r=2可得,an=Cn2=
| n(n-1) |
| 2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=2(1-
| 1 |
| n |
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 2 |
| n |
故答案为:2
练习册系列答案
相关题目