题目内容

设an是(1+x)n的展开式中x2项的系数(n=2,3,4,…),则极限
lim
n→∞
(
1
a2
+…+
1
an
)
=______.
二项展开式的通项Tr+1=Cnrxr
令r=2可得,an=Cn2=
n(n-1)
2

1
a2
+
1
a3
+…+
1
an
=2[
1
1×2
+
1
2×3
+…+
1
n(n-1)
]

=2(1-
1
2
+
1
2
-
1
3
+…
1
n-1
-
1
n
)

=2(1-
1
n
)

lim
n→∞
(
1
a2
+…+
1
an
)
=
lim
n→∞
(2-
2
n
)=2

故答案为:2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网