ÌâÄ¿ÄÚÈÝ
Éè{an}ÊǵȲîÊýÁУ¬ÆäǰnÏîµÄºÍΪSn£®£¨1£©ÇóÖ¤£ºÊýÁÐ{
| Sn |
| n |
£¨2£©Éè{an}¸÷ÏîΪÕýÊý£¬a1=
| 1 |
| 15 |
| Sm |
| Sp |
| Sn |
£¨3£©Éèbn=aan£¨aΪ³£Êý£¬a£¾0£¬a¡Ù1£¬a1¡Ùa2£©£¬ÊýÁÐ{bn}ǰnÏîºÍΪTn£®¶ÔÓÚÕýÕûÊýc£¬d£¬e£¬f£¬Èôc£¼d£¼e£¼f£¬ÇÒc+f=d+e£¬ÊԱȽϣ¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС£®
·ÖÎö£º£¨1£©{an}ÊǵȲîÊýÁУ¬¿ÉÒÔÓÃÊ×Ïîa1ºÍ¹«²îdÀ´±íʾǰnÏîµÄºÍΪSnÔÙ½«Æä´úÈë
µÄ±í´ïʽ£¬ÔÙÓÃÏàÁÚÁ½Ïî×÷²îµÄ·½·¨£¬µÃµ½ÏàÁÚÁ½ÏîµÄ²îΪ³£Êý£¬´Ó¶øÖ¤³öÊýÁÐ{
}ΪµÈ²îÊýÁУ»
£¨2£©¸ù¾Ý£¨1£©ÖеĽáÂÛ£¬ÏÈÉè
=¦Án+¦Â£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®½«´Ëʽ´úÈëÒÑ֪ʽÖеڶþ¸öµÈʽ£¬Í¨¹ýÕûÀí±äÐεæÂ=0£¬ÔÙ½áºÏ½áºÏÊ×Ïîa1=
£¬µÃ¦Á=
£¬¹ÊSn=
n2£®È»ºóÀûÓô˱í´ïʽ½«¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}»¯¼òΪ{£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£¬¸ù¾Ý15ÓÐ4¸öÕýÔ¼Êý£¬µÃµ½Âú×ãÌõ¼þµÄÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁе͍ÒåÖ¤³öÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬È»ºóÖ¤Ã÷µÈ±ÈÊýÁеÄÒ»¸ö½áÂÛ£ºµ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®ÀûÓÃÕâ¸ö½áÂÛ£¬½áºÏc+f=d+e¿ÉÒÔÖ¤µÃ£¨Tc£©-1-£¨Td£©-1±È£¨Te£©-1-£¨Tf£©-1´ó£¬×îºóͨ¹ýÒÆÏîÖ¤µÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
| Sn |
| n |
| Sn |
| n |
£¨2£©¸ù¾Ý£¨1£©ÖеĽáÂÛ£¬ÏÈÉè
| Sn |
| n |
| 1 |
| 15 |
| 1 |
| 15 |
| 1 |
| 15 |
£¨3£©¸ù¾ÝµÈ±ÈÊýÁе͍ÒåÖ¤³öÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬È»ºóÖ¤Ã÷µÈ±ÈÊýÁеÄÒ»¸ö½áÂÛ£ºµ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®ÀûÓÃÕâ¸ö½áÂÛ£¬½áºÏc+f=d+e¿ÉÒÔÖ¤µÃ£¨Tc£©-1-£¨Td£©-1±È£¨Te£©-1-£¨Tf£©-1´ó£¬×îºóͨ¹ýÒÆÏîÖ¤µÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
½â´ð£º½â£º£¨1£©{an}ΪµÈ²îÊýÁУ¬ÉèÆä¹«²îΪd£¬Ôò
=
=a 1+
d£¬ÓÚÊÇ
-
=a 1+
d-(aq+
d)=
£¨³£Êý£©£¬
¹ÊÊýÁÐ{
}ÊÇa1ΪÊ×Ï¹«²îΪ
µÄµÈ²îÊýÁУ®
£¨2£©ÒòΪ{an}ΪµÈ²îÊýÁУ¬Ëù{
}ÊǵȲîÊýÁУ¬
ÓÚÊÇ¿ÉÉè
=¦Án+¦Â£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®
ÒòΪm+p=2n£¬ËùÒÔÓÉ
+
=2
Á½±ßƽ·½µÃ
Sm+Sp+2
=4Sn£¬¼´µÃa(m 2+p 2)+2
=4an 2+2¦Ân=a(m+p) 2+2¦Ân£¬
ÓÚÊÇ
=¦Ámp+¦Ân£¬Á½±ßƽ·½²¢ÕûÀíµÃ¦Â2£¨m-p£©2=0£®
ÒòΪm¡Ùp£¬ËùÒÔ¦Â=0£¬´Ó¶øSn=¦Án2£¬¶øa1=
£¬ËùÒÔ¦Á=
£®
¹ÊSn=
n2£®ËùÒÔ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|(
xy) 2=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£®
ÒòΪ15ÓÐ4¸öÕýÔ¼Êý£¬ËùÒÔÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£®
¼´¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}ÖеÄÔªËØ¸öÊýΪ4£®
£¨3£©ÒòΪ
=
=a d£¨³£Êý£©£¬
ËùÒÔÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ®
ÒòΪa1¡Ùa2£¬ËùÒԵȱÈÊýÁÐ{bn}µÄ¹«±Èq¡Ù1£®
£¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС¹ØÏµ¼´£¨Tc£©-1-£¨Td£©-1Ó루Te£©-1-£¨Tf£©-1µÄ´óС¹ØÏµ
×¢Òâµ½µ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®
ËùÒÔTd£¾qd-cTcÇÒTf£¾qf-eTe?£¨Tc£©-1-£¨Td£©-1=
£¾
=£¨Te£©-1-£¨Tf£©-1
ÒÆÏî¿ÉµÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
| S n |
| n |
na 1+
| ||
| n |
| n-1 |
| 2 |
| Sn+1 |
| n+1 |
| S n |
| n |
| n |
| 2 |
| n-1 |
| 2 |
| d |
| 2 |
¹ÊÊýÁÐ{
| Sn |
| n |
| d |
| 2 |
£¨2£©ÒòΪ{an}ΪµÈ²îÊýÁУ¬Ëù{
| Sn |
| n |
ÓÚÊÇ¿ÉÉè
| Sn |
| n |
ÒòΪm+p=2n£¬ËùÒÔÓÉ
| Sm |
| Sp |
| Sn |
Sm+Sp+2
| Sm |
| Sp |
| Sm |
| Sp |
ÓÚÊÇ
| Sm Sn |
ÒòΪm¡Ùp£¬ËùÒÔ¦Â=0£¬´Ó¶øSn=¦Án2£¬¶øa1=
| 1 |
| 15 |
| 1 |
| 15 |
¹ÊSn=
| 1 |
| 15 |
| 1 |
| 15 |
ÒòΪ15ÓÐ4¸öÕýÔ¼Êý£¬ËùÒÔÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£®
¼´¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}ÖеÄÔªËØ¸öÊýΪ4£®
£¨3£©ÒòΪ
| b n+1 |
| b n |
| aan+1 |
| aan |
ËùÒÔÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ®
ÒòΪa1¡Ùa2£¬ËùÒԵȱÈÊýÁÐ{bn}µÄ¹«±Èq¡Ù1£®
£¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС¹ØÏµ¼´£¨Tc£©-1-£¨Td£©-1Ó루Te£©-1-£¨Tf£©-1µÄ´óС¹ØÏµ
×¢Òâµ½µ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®
ËùÒÔTd£¾qd-cTcÇÒTf£¾qf-eTe?£¨Tc£©-1-£¨Td£©-1=
| T d-T c |
| T dTc |
| T f-T e |
| T eTf |
ÒÆÏî¿ÉµÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
µãÆÀ£º±¾ÌâÌâÊǺ¯ÊýÓëÊýÁС¢²»µÈʽµÄ×ۺϣ¬ÊÇÒ»µÀÄÑÌ⣮×ÅÖØ¿¼²éÊýÁеĺ¯ÊýÐÔÐÔÖÊ¡¢µÈ²îÊýÁе͍ÒåºÍÐÔÖʵÈ֪ʶ£¬¿¼²éÁËת»¯¹¹Ôì·¨¡¢·ÅËõ·¨¡¢ÊýÐνáºÏµÈ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éè{an}ÊǵȲîÊýÁУ¬a1+a3+a5=9£¬a6=9£®ÔòÕâ¸öÊýÁеÄǰ6ÏîºÍµÈÓÚ£¨¡¡¡¡£©
| A¡¢12 | B¡¢24 | C¡¢36 | D¡¢48 |