题目内容
已知Sn是数列{an}的前n项和,若a1=1,a2=3,an+2=2an+1-an+2(n=1,2,…),则Sn=
+n
+n.
| n(n-1)(n+1) |
| 3 |
| n(n-1)(n+1) |
| 3 |
分析:由an+2=2an+1-an+2(n=1,2,…),变形为an+2-an+1=an+1-an+2,令bn=an+1-an,则bn+1=bn+2,利用等差数列的通项公式即可得出bn.可得an+1-an=2n,利用“累加求和”公式an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出an.进而利用12+22+…+n2=
及其等差数列的前n项和公式即可得出Sn.
| n(n+1)(2n+1) |
| 6 |
解答:解:∵an+2=2an+1-an+2(n=1,2,…),∴an+2-an+1=an+1-an+2,
令bn=an+1-an,则bn+1=bn+2,
∴数列{bn}是以b1=a2-a1=3-1=2为首项,2为公差的等差数列.
∴bn=2+(n-1)×2=2n.
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=2×
+1
=n2-n+1.
∴Sn=(12+22+…+n2)-(1+2+…+n)+n
=
-
+n
=
+n.
故答案为
+n.
令bn=an+1-an,则bn+1=bn+2,
∴数列{bn}是以b1=a2-a1=3-1=2为首项,2为公差的等差数列.
∴bn=2+(n-1)×2=2n.
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=2×
| n(n-1) |
| 2 |
=n2-n+1.
∴Sn=(12+22+…+n2)-(1+2+…+n)+n
=
| n(n+1)(2n+1) |
| 6 |
| n(n+1) |
| 2 |
=
| n(n-1)(n+1) |
| 3 |
故答案为
| n(n-1)(n+1) |
| 3 |
点评:正确变形转化为等差数列、“累加求和”公式及其利用12+22+…+n2=
、等差数列的前n项和公式等是解题的关键.
| n(n+1)(2n+1) |
| 6 |
练习册系列答案
相关题目