题目内容
已知直线在轴上的截距为,直线上横坐标分别为的两点的线段长为,求直线的方程.
或
设直线的方程为,又设直线上两点,,
由题意得,即,
,所以直线的方程为或.
已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以
点 为圆心,1为半径的圆相切,又知的一个焦点与A关于直线对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线于两点,圆心点到抛物线准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)当的角平分线垂直轴时,求直线的斜率;
(Ⅲ)若直线在轴上的截距为,求的最小值.
如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.
(本小题满分8分)
已知直线在轴上的截距是在轴上的截距的倍,且直线与两坐标轴围成的三角形的面积是,求该直线的方程.