题目内容
如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为
______时,其容积最大.
如图,设底面六边形的边长为x,高为d,则
d=
| 3 |
| 1 |
| 2 |
S=6•
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
V=Sd=
| 3 |
| 2 |
| 3 |
| ||
| 2 |
| 9 |
| 4 |
V′=
| 9 |
| 4 |
| 2 |
| 3 |
当0<x<
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
故答案为:
| 2 |
| 3 |
练习册系列答案
相关题目
题目内容
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| ||
| 2 |
| 9 |
| 4 |
| 9 |
| 4 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |