题目内容

5.某人准备租一辆车从黄石出发去武汉,已知从出发点到目的地的距离为100km,按交通法规定,这段公路车速限制在60≤x≤120(单位:km/h)之间.假设目前油价为7.0(单位:元/L),汽车的耗油率为3+$\frac{{x}^{2}}{350}$(单位:L/hH),其中x(单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为141元,不考虑其它费用,这次租车的总费用最少是多少?此时的车速x是多少?(注:租车总费用=耗油费+司机的工资)

分析 根据题意列出总费用的表达式,利用基本不等式计算即得结论.

解答 解:根据题意,设总费用为f(x),则:
f(x)=141•$\frac{100}{x}$+7•$\frac{100}{x}$•(3+$\frac{{x}^{2}}{350}$)=$\frac{16200}{x}$+2x,60≤x≤120,
∵$\frac{16200}{x}$+2x≥2$\sqrt{\frac{16200}{x}•2x}$=360,当且仅当$\frac{16200}{x}$=2x即x=90时取等号,
∴当车速为90时,租车的总费用最少,为360元.

点评 本题主要考查基本不等式在最值中的应用,主要函数的定义域以及检验等号成立的条件,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网