题目内容
已知已知函数f(x)=
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
| x |
| 2x+1 |
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
(Ⅰ)由已知得,an+1=
,
∴
=
+2,即
-
=2.
∴数列{
}是首项,公差d=2的等差数列.(6分)
(Ⅱ)由(Ⅰ)知
=1+(n-1)×2=2n-1,
∴an=
(n∈N*),(8分)
∴anan+1=
=
(
-
),(10分)
∴Sn=a1a2+a2a3++anan+1=
+
++
=
[(1-
)+(
-
)++(
-
)]=
(1-
)=
.(14分)
∴2Sn-1=
-1=
<0(n∈N*),∴2Sn<1.(16分)
| an |
| 2an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
(Ⅱ)由(Ⅰ)知
| 1 |
| an |
∴an=
| 1 |
| 2n-1 |
∴anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=a1a2+a2a3++anan+1=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∴2Sn-1=
| 2n |
| 2n+1 |
| -1 |
| 2n+1 |
练习册系列答案
相关题目