题目内容

已知已知函数f(x)=
x
2x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列{
1
an
}
是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
(Ⅰ)由已知得,an+1=
an
2an+1

1
an+1
=
1
an
+2
,即
1
an+1
-
1
an
=2

∴数列{
1
an
}
是首项,公差d=2的等差数列.(6分)
(Ⅱ)由(Ⅰ)知
1
an
=1+(n-1)×2=2n-1

an=
1
2n-1
(n∈N*)
,(8分)
anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,(10分)
∴Sn=a1a2+a2a3++anan+1=
1
1×3
+
1
3×5
++
1
(2n-1)(2n+1)

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)++(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1
.(14分)
2Sn-1=
2n
2n+1
-1=
-1
2n+1
<0
(n∈N*),∴2Sn<1.(16分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网