题目内容

已知函数f(x)=x-sinx,数列{an}满足:0<a1<1,an+1=f(an),n=1,2,3,….
证明:(I)0<an+1<an<1;
(II)an+1
1
6
an3
证明:(I)先用数学归纳法证明0<an<1,n=1,2,3,
(i)当n=1时,由已知显然结论成立.
(ii)假设当n=k时结论成立,即0<ak<1.
因为0<x<1时f′(x)=1-cosx>0,
所以f(x)在(0,1)上是增函数.又f(x)在[0,1]上连续,
从而f(0)<f(ak)<f(1),即0<ak+1<1-sin1<1.
故n=k+1时,结论成立.
由( i)、(ii)可知,0<an<1对一切正整数都成立.
又因为0<an<1时,an+1-an=an-sinan-an=-sinan<0,
所以an+1<an
综上所述0<an+1<an<1.
(II)设函数g(x)=sinx-x+
1
6
x3
,0<x<1.由(I)知,
当0<x<1时,sinx<x,
从而g′(x)=cosx-1+
x2
2
=-2sin2
x
2
+
x2
2
>-2(
x
2
)2+
x2
2
=0.
所以g(x)在(0,1)上是增函数.
又g(x)在[0,1]上连续,且g(0)=0,
所以当0<x<1时,g(x)>0成立.
于是g(an)>0,即sinan-an+
1
6
an
3>0.
故an+1
1
6
an
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网