题目内容
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(
),令bn=anSn,数列{
}的前n项和为Tn.
(Ⅰ)求{an}的通项公式和Sn;
(Ⅱ)求证:Tn<
;
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
| 3 | an+1 |
| 1 |
| bn |
(Ⅰ)求{an}的通项公式和Sn;
(Ⅱ)求证:Tn<
| 1 |
| 3 |
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
(Ⅰ)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.
解得a1=1,d=3∴an=3n-2
∵f(x)=x3∴Sn=f(
)=an+1=3n+1.
(Ⅱ)bn=anSn=(3n-2)(3n+1)
∴
=
=
(
-
)∴Tn=
(1-
)<
(Ⅲ)由(2)知,Tn=
∴T1=
,Tm=
,Tn=
∵T1,Tm,Tn成等比数列.
∴(
)2=
即
=
当m=1时,7=
,n=1,不合题意;当m=2时,
=
,n=16,符合题意;
当m=3时,
=
,n无正整数解;当m=4时,
=
,n无正整数解;
当m=5时,
=
,n无正整数解;当m=6时,
=
,n无正整数解;
当m≥7时,m2-6m-1=(m-3)2-10>0,则
<1,而
=3+
>3,
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
解得a1=1,d=3∴an=3n-2
∵f(x)=x3∴Sn=f(
| 3 | an+1 |
(Ⅱ)bn=anSn=(3n-2)(3n+1)
∴
| 1 |
| bn |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
(Ⅲ)由(2)知,Tn=
| n |
| 3n+1 |
| 1 |
| 4 |
| m |
| 3m+1 |
| n |
| 3n+1 |
∴(
| m |
| 3m+1 |
| 1 |
| 4 |
| n |
| 3n+1 |
| 6m+1 |
| m2 |
| 3n+4 |
| n |
当m=1时,7=
| 3n+4 |
| n |
| 13 |
| 4 |
| 3n+4 |
| n |
当m=3时,
| 19 |
| 9 |
| 3n+4 |
| n |
| 25 |
| 16 |
| 3n+4 |
| n |
当m=5时,
| 31 |
| 25 |
| 3n+4 |
| n |
| 37 |
| 36 |
| 3n+4 |
| n |
当m≥7时,m2-6m-1=(m-3)2-10>0,则
| 6m+1 |
| m2 |
| 3n+4 |
| n |
| 4 |
| n |
所以,此时不存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
练习册系列答案
相关题目