题目内容
(Ⅰ)求证:
=
;
(Ⅱ)化简:
+
.
| sinx |
| 1-cosx |
| 1+cosx |
| sinx |
(Ⅱ)化简:
| tan(3π-α) | ||
sin(π-α)sin(
|
sin(2π-α)cos(α-
| ||
sin(
|
分析:(Ⅰ)(法一)由比例性质(1-cosx)•(1+cosx)=1-cos2x=sin2x可证;
(法二)利用sin2x+cos2x=1,移项整理即可;
(法三)作差整理,最后证得差为0即可.
(Ⅱ)利用诱导公式与三角函数间的关系式即可证得结论.
(法二)利用sin2x+cos2x=1,移项整理即可;
(法三)作差整理,最后证得差为0即可.
(Ⅱ)利用诱导公式与三角函数间的关系式即可证得结论.
解答:(Ⅰ)证明:(法一)利用比例性质
∵(1-cosx)•(1+cosx)=1-cos2x=sin2x
∴
=
…(5分)
(法二)
∵sin2x+cos2x=1,
∴1-cos2x=sinx•sinx,即(1-cosx)•(1+cosx)=sinx•sinx
又∵(1-cosx)≠0,sinx≠0
∴
=
…(5分)
(法三)
∵
-
=
=
=
=0
∴
=
…(5分)
(Ⅱ)原式=
+
=
+
=
-
=
=
=1.…(12分)
∵(1-cosx)•(1+cosx)=1-cos2x=sin2x
∴
| sinx |
| 1-cosx |
| 1+cosx |
| sinx |
(法二)
∵sin2x+cos2x=1,
∴1-cos2x=sinx•sinx,即(1-cosx)•(1+cosx)=sinx•sinx
又∵(1-cosx)≠0,sinx≠0
∴
| sinx |
| 1-cosx |
| 1+cosx |
| sinx |
(法三)
∵
| sinx |
| 1-cosx |
| 1+cosx |
| sinx |
=
| sin2x-(1-cosx)(1+cosx) |
| (1-cosx)sinx |
=
| sin2x-(1-cos2x) |
| (1-cosx)sinx |
=
| sin2x-sin2x |
| (1-cosx)sinx |
∴
| sinx |
| 1-cosx |
| 1+cosx |
| sinx |
(Ⅱ)原式=
|
|
=
| tan(π-α) | ||
-sin(
|
|
=
| tanα |
| cosαsinα |
| sin2α |
| cos2α |
=
| 1-sin2α |
| cos2α |
| cos2α |
| cos2α |
点评:本题考查三角函数恒等式的证明,着重考查诱导公式与同角三角函数间的基本关系,考查三角函数的化简求值,属于中档题.
练习册系列答案
相关题目