题目内容
△ABC的外心为O,AB=2,AC=3,BC=
,则
•
等于( )
| 7 |
| AO |
| BC |
分析:可得
=
=
(
+
),故
•
=
(
+
)•(
-
),代入数值可得.
| AO |
| 2 |
| 3 |
| AD |
| 1 |
| 3 |
| AB |
| AC |
| AO |
| BC |
| 1 |
| 3 |
| AB |
| AC |
| AC |
| AB |
解答:解:∵△ABC的外心为O,延长AO,交BC于D,则D为BC中点,
∴
=
=
×
(
+
)=
(
+
),
故
•
=
(
+
)•(
-
)
=
(
2-
2)=
(32-22)=
故答案为D
∴
| AO |
| 2 |
| 3 |
| AD |
| 2 |
| 3 |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 3 |
| AB |
| AC |
故
| AO |
| BC |
| 1 |
| 3 |
| AB |
| AC |
| AC |
| AB |
=
| 1 |
| 3 |
| AC |
| AB |
| 1 |
| 3 |
| 5 |
| 3 |
故答案为D
点评:本题考查平面向量数量积的运算,属中档题.
练习册系列答案
相关题目