题目内容
函数f(x)=cos(2x-
)+2sin(x-
)sin(x+
),x∈[-
,
]的值域是
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 12 |
| π |
| 2 |
[-
,1]
| ||
| 2 |
[-
,1]
.
| ||
| 2 |
分析:利用两角和与差的正弦余弦函数化简函数的表达式,再利用二倍角公式,把函数解析式化简为sin(2x-
),根据x∈[-
,
],求出2x-
的范围,求出sin(2x-
)的最值即可求得函数f(x)的值域.
| π |
| 6 |
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
解答:解:函数f(x)=cos(2x-
)+2sin(x-
)sin(x+
)
=
sin2x+
sin2x+(sinx-cosx)(sinx+cosx)
=
cos2x+
sin2x+sin2x-cos2x
=
cos2x+
sin2x-cos2x
=sin(2x-
),
∵x∈[-
,
],∴2x-
∈[-
,
],
因为f(x)=sin(2x-
)在区间[-
,
]上单调递增.
在区间[
,
]单调递减,所以当x=
,f(x)取最大值l.
又∵f(-
)=-
<f(
)=
,
当x=-
时,f(x)取最小值-
,
所以函数f(x)在区间上的值域为[-
,1].
故答案为:[-
,1]
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=sin(2x-
| π |
| 6 |
∵x∈[-
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
因为f(x)=sin(2x-
| π |
| 6 |
| π |
| 12 |
| π |
| 3 |
在区间[
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
又∵f(-
| π |
| 12 |
| ||
| 2 |
| π |
| 2 |
| 1 |
| 2 |
当x=-
| π |
| 12 |
| ||
| 2 |
所以函数f(x)在区间上的值域为[-
| ||
| 2 |
故答案为:[-
| ||
| 2 |
点评:本题考查了三角函数式的化简求值,以及正弦函数的图象与性质,涉及的知识有两角和与差的正弦、余弦函数公式,二倍角的余弦函数公式,以及特殊角的三角函数值.熟练掌握三角函数的基本性质,是解三角函数问题的关键.
练习册系列答案
相关题目
函数f(x)=cos(2x+
)是( )
| π |
| 2 |
| A、最小正周期为π的偶函数 | ||
B、最小正周期为
| ||
| C、最小正周期为π的奇函数 | ||
D、最小正周期为
|