题目内容
等差数列{an}中,a3=7,a5+a7=26,{an}的前n项和为sn..
(1)求an及sn;
(2)令bn=
,求{bn}的前n项和Tn.
(1)求an及sn;
(2)令bn=
| 1 |
| a2n-1 |
(1)设等差数列{an}的公差为d,可得
,解之得
∴an=3+(n-1)×2=2n+1
Sn=
=n2+2n…(6分)
(2)∵an=2n+1,可得an2-1=(2n+1)2-1=4n(n+1)
∴bn=
=
=
(
-
)
由此可得{bn}的前n项和为
Tn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
…(12分)
|
|
∴an=3+(n-1)×2=2n+1
Sn=
| n(3+2n+1) |
| 2 |
(2)∵an=2n+1,可得an2-1=(2n+1)2-1=4n(n+1)
∴bn=
| 1 |
| a2n-1 |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
由此可得{bn}的前n项和为
Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
练习册系列答案
相关题目