题目内容
【题目】在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能性相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1则中奖,求中奖的概率.
【答案】(1)
;(2)
.
【解析】试题分析:
(1)列出所有可能的事件,结合古典概型公式可得求a+b能被3整除的概率是
;
(2)结合(1)中列出的结果,找到满足题意的事件,可求得中奖的概率是
.
试题解析:
(1)从甲乙两个盒子中各取一个球,每个球被取出的可能性相等的结果有:
(1,1)(1,2)(1,3)(1,4),
(2,1)(2,2)(2,3)(2,4),
(3,1)(3,2)(3,3)(3,4),
(4,1)(4,2)(4,3)(4,4),16种结果,每种结果出现的可能性相等,属于古典概率
记“取出的两个球上标号之和能被3整除”的事件为A,则A的结果有(1,2)(2,1)(2,4)(3,3)(4,2)5种结果,
则a+b能被3整除的概率P(A)=
.
(2)而满足|a-b|≤1的数对(a,b)有(1,1),(1,2),(2,1)、(2,2),(2,3),
(3,2),(3,3),(3,4),(4,3),(4,4),共计10个,
则中奖的概率P=
.
【题目】第32届夏季奥林匹克运动会将于2020年在日本东京举行,下表是五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
![]()
(Ⅰ)根据表格中两组数据完成五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)甲、乙、丙三人竞猜2020年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为
,丙猜中中国代表团的概率为
,三人各自猜哪个代表团的结果互不影响,现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为
,求
的分布列及数学期望
.