题目内容
13.(1)求证:GH∥平面ABC;
(2)求证:平面BCD⊥平面PAC.
分析 (1)根据线面平行的判定定理证明GH∥平面ABC;
(2)根据面面垂直的判定定理即可证明平面BCD⊥平面PAC.
解答
证明:(1)连结DE,
在△BDE中,G,H分别是BD,BE的中点,
∴GH为△BDE的中位线,
∴GH∥DE.
在△PAC,D,E分别是PA,PC的中点,
∴DE是△PAC的中位线,
∴DE∥AC,
∴GH∥AC.
∵GH?平面ABC,
∴GH∥平面ABC.
(2)∵AB=PB,
∴BD⊥PA,
∵∠PBC=∠ABC=90°,
∴PC=AC,
∴CD⊥PA,
∴PA⊥平面BCD,
∴平面BCD⊥平面PAC.
点评 本题主要考查空间直线和平面平行以及平面和平面垂直的判定,要求熟练掌握相应的判定定理.
练习册系列答案
相关题目
18.设点P是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上于点,F1,F2分别是椭圆的左、右交点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$+S${\;}_{△IP{F}_{2}}$=2S${\;}_{△I{F}_{1}{F}_{2}}$,则该椭圆的离心率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是( )
| A. | [-1,0) | B. | (0,1) | C. | [-1,1] | D. | [-2,2] |