题目内容
已知函数f(x)=x2-2|x|.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)判断函数f(x)在(-1,0)上的单调性并加以证明.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)判断函数f(x)在(-1,0)上的单调性并加以证明.
分析:(Ⅰ)先求函数的定义域是R,再利用偶函数的定义,可以证明函数f(x)是偶函数.
(Ⅱ)利用单调性的证题步骤:取值,作差,变形,定号,下结论即可证明函数f(x)在(-1,0)上是单调递增函数.
(Ⅱ)利用单调性的证题步骤:取值,作差,变形,定号,下结论即可证明函数f(x)在(-1,0)上是单调递增函数.
解答:(Ⅰ)解:是偶函数.
证明:函数的定义域是R,
∵f(-x)=(-x)2-2|-x|=x2-2|x|=f(x)
∴函数f(x)是偶函数.
(Ⅱ)解:是单调递增函数.
证明:当x∈(-1,0)时,f(x)=x2+2x
设-1<x1<x2<0,则x1-x2<0,且x1+x2>-2,即x1+x2+2>0
∵f(x1)-f(x2)=(
-
)+2(x1-x2)=(x1-x2)(x1+x2+2)<0
∴f(x1)<f(x2)
所以函数f(x)在(-1,0)上是单调递增函数.
证明:函数的定义域是R,
∵f(-x)=(-x)2-2|-x|=x2-2|x|=f(x)
∴函数f(x)是偶函数.
(Ⅱ)解:是单调递增函数.
证明:当x∈(-1,0)时,f(x)=x2+2x
设-1<x1<x2<0,则x1-x2<0,且x1+x2>-2,即x1+x2+2>0
∵f(x1)-f(x2)=(
| x | 2 1 |
| x | 2 2 |
∴f(x1)<f(x2)
所以函数f(x)在(-1,0)上是单调递增函数.
点评:本题以函数为载体,考查函数的奇偶性,考查函数的单调性,熟练掌握定义是关键.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|