题目内容
已知向量m=(sin
,cos
),n=(
cos
,cos
),记f(x)=m•n;
(1)若f(x)=1,求cos(x+
)的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
| x |
| 4 |
| x |
| 4 |
| 3 |
| x |
| 4 |
| x |
| 4 |
(1)若f(x)=1,求cos(x+
| π |
| 3 |
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
(1)f(x)=m•n=
sin
cos
+cos2
=
sin
+
cos
+
=sin(
+
)+
,
∵f(x)=1,∴sin(
+
)=
,
∴cos(x+
)=1-2sin2(
+
)=
.
(2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C),
∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=
,B=
;
∴0<A<
,∴
<
+
<
,
<sin(
+
)<1
∴
<
+
<
,
<sin (
+
)<1;
又∵f(x)=sin(
+
)+
,∴f(A)=sin(
+
)+
,
故函数f(A)的取值范围是(1,
).
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| ||
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∵f(x)=1,∴sin(
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∴cos(x+
| π |
| 3 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
(2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C),
∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=
| 1 |
| 2 |
| π |
| 3 |
∴0<A<
| 2π |
| 3 |
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
∴
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
又∵f(x)=sin(
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
故函数f(A)的取值范围是(1,
| 3 |
| 2 |
练习册系列答案
相关题目