题目内容

A={(x,y)|y2x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在kb∈N,使得(AB)∩C=,证明此结论.

k=1,故存在自然数k=1,b=2,使得(AB)∩C=


解析:

∵(AB)∩C=,∴AC=BC=

  ∴k2x2+(2bk-1)x+b2-1=0

AC=

Δ1=(2bk-1)2-4k2(b2-1)<0

∴4k2-4bk+1<0,此不等式有解,

其充要条件是16b2-16>0, 

即      b2>1            ①

∴4x2+(2-2k)x+(5+2b)=0

BC=,∴Δ2=(1-k)2-4(5-2b)<0

k2-2k+8b-19<0, 从而8b<20,

即      b<2.5            ②

由①②及b∈N,得b=2代入由Δ1<0和Δ2<0组成的不等式组,得

k=1,故存在自然数k=1,b=2,使得(AB)∩C=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网