题目内容
函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一个实根0,则f(-1)·f(1)的值( )
A.大于0 B.小于0 C.等于0 D.无法确定
D
已知函数.
(1)当a=3时,求f(x)的零点;
(2)求函数y=f (x)在区间[1,2]上的最小值.
用二分法求函数y=f(x)在区间(2,4)上的唯一零点的近似值时,验证f(2)·f(4)<0,取区间(2,4)的中点x1==3,计算得f(2)·f(x1)<0,则此时零点x0所在的区间是 ( )
A.(2,4) B.(2,3)
C.(3,4) D.无法确定
若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值( )
A.大于0 B.小于0 C.等于0 D.无法判断
(本小题满分12分)已知关于x的二次函数f(x)=ax2-2bx+1.
(1)已知集合P={-2,1,2 },Q={-1,1,2},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区域 内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(本小题满分16分)已知函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.