题目内容
化简cosθcos(θ-
)+sinθsin(θ-
),得其结果为
.
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
分析:逆用两角差的余弦公式cosθcosφ+sinθsinφ=cos(θ-φ)即可得答案.
解答:解:∵cosθcos(θ-
)+sinθsin(θ-
)
=cos[θ-(θ-
)]
=cos
=
,
故答案为:
.
| π |
| 3 |
| π |
| 3 |
=cos[θ-(θ-
| π |
| 3 |
=cos
| π |
| 3 |
=
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查两角差的余弦函数,考查三角函数的化简求值,逆用公式是关键,属于基础题.
练习册系列答案
相关题目