题目内容
已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(1)=1,且对于任意的正整数n,有an=
,bn=f(
)+1
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn;
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn.
(1)求x0的值;
(2)若f(1)=1,且对于任意的正整数n,有an=
| 1 |
| f(n) |
| 1 |
| 2n |
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn;
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn.
(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0)①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①②得f(x0)=f(1)
又∵f(x)是单调函数,
∴x0=1
(2)由(1)可得 f(x1+x2)=f(1)+f(x1)+f(x2)+1
则f(n+1)=f(n)+f(1)+1=f(n)+2
又∵f(1)=1
∴f(n)=2n-1 (n∈N*),
∴an=
∴Sn=
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
)
又∵f(1)=f(
+
)=f(
)+f(
)+f(1),∴f(
)=0,∴b1=f(
)+1=1
∵f(
)=f(
+
)=f(
)+f(
)+f(1)=2f(
)+1
∴bn=f(
)+1=2f(
)+2=2bn+1
∴bn=b1×(
)n-1=(
)n-1
∴bnbn+1=(
)n-1×(
)n=
×(
)n-1
∴Tn=b1b2+b2b3+…+bnbn+1=
=
[1-(
)n]
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①②得f(x0)=f(1)
又∵f(x)是单调函数,
∴x0=1
(2)由(1)可得 f(x1+x2)=f(1)+f(x1)+f(x2)+1
则f(n+1)=f(n)+f(1)+1=f(n)+2
又∵f(1)=1
∴f(n)=2n-1 (n∈N*),
∴an=
| 1 |
| 2n-1 |
∴Sn=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)×(2n+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
又∵f(1)=f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵f(
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
∴bn=f(
| 1 |
| 2n |
| 1 |
| 2n+1 |
∴bn=b1×(
| 1 |
| 2 |
| 1 |
| 2 |
∴bnbn+1=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴Tn=b1b2+b2b3+…+bnbn+1=
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 4 |
练习册系列答案
相关题目