题目内容
设f(n)=1+
+
+…+
,那么f(2k+1)-f(2k)=______.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∵f(n)=1+
+
+…+
,
∴f(2k+1)-f(2k)=1+
+
+…+
+
+
+…+
-(1+
+
+…+
)
=
+
+…+
.
故答案为:
+
+…+
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∴f(2k+1)-f(2k)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+ 2k |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
=
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+1 |
故答案为:
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| 2k+1 |
练习册系列答案
相关题目