题目内容
已知函数
,使得?x1∈[1,2],都有f(x1)<f(x0),则实数a的取值范围是
- A.(0,1)
- B.(1,2)
- C.(2,+∞)
- D.(0,1)∪(2,+∞)
D
分析:求导函数,确定函数的单调性,进而可得函数的最大值,从而问题转化为最大值不在区间[1,2],故可求实数a的取值范围.
解答:求导函数,
当x∈(0,a)时,f′(x)>0,f(x)单调递增,当x∈(a,+∞)时,f′(x)<0,f(x)单调递减,
故f(x)max=f(a).
?x0∈R,使得?x1∈[1,2],都有f(x1)<f(x0),则最大值不在区间[1,2],
∴a∉[1,2],所以实数a的取值范围是(0,1)∪(2,+∞)
故选D.
点评:本题考查导数知识的运用,考查恒成立问题,考查函数的最值,属于中档题.
分析:求导函数,确定函数的单调性,进而可得函数的最大值,从而问题转化为最大值不在区间[1,2],故可求实数a的取值范围.
解答:求导函数,
当x∈(0,a)时,f′(x)>0,f(x)单调递增,当x∈(a,+∞)时,f′(x)<0,f(x)单调递减,
故f(x)max=f(a).
?x0∈R,使得?x1∈[1,2],都有f(x1)<f(x0),则最大值不在区间[1,2],
∴a∉[1,2],所以实数a的取值范围是(0,1)∪(2,+∞)
故选D.
点评:本题考查导数知识的运用,考查恒成立问题,考查函数的最值,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=
(x∈R)时,则下列结论不正确的是( )
| x |
| 1+|x| |
| A、?x∈R,等式f(-x)+f(x)=0恒成立 |
| B、?m∈(0,1),使得方程|f(x)|=m有两个不等实数根 |
| C、?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2) |
| D、?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点 |