题目内容
| lim |
| n→∞ |
| ||||||
| 1+3+5+…+(2n-1) |
| A.1 | B.
| C.
| D.
|
∵
+
+
=1+n+
n(n-1)=
n2+
n+1
1+3+5+…+(2n-1)=
•n=n2
∴
=
=
(
+
+
)=
故选B
| C | 0n |
| C | 1n |
| C | 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1+3+5+…+(2n-1)=
| 1+2n-1 |
| 2 |
∴
| lim |
| n→∞ |
| ||||||
| 1+3+5+…+(2n-1) |
| lim |
| n→∞ |
| ||
| n2 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| n2 |
| 1 |
| 2 |
故选B
练习册系列答案
相关题目