题目内容
若实数a,b满足
=1,则
=( )
| lim |
| n→∞ |
| an3+bn2+2008n |
| n2+2008 |
| lim |
| n→∞ |
| an2+bn+2 |
| n2-9 |
分析:由
=1可得a=0,而
=
=b,可求b,代入到所求的式子
可求
| lim |
| n→∞ |
| an3+bn2+2008n |
| n2+2008 |
| lim |
| n→∞ |
| bn2+2008n |
| n2+2008 |
| lim |
| n→∞ |
b+
| ||
1+
|
| lim |
| n→∞ |
| an2+bn+2 |
| n2-9 |
解答:解:∵
=1
∴a=0,
∴
=
=b
∴b=1
则
=
=
=0
故选B
| lim |
| n→∞ |
| an3+bn2+2008n |
| n2+2008 |
∴a=0,
∴
| lim |
| n→∞ |
| bn2+2008n |
| n2+2008 |
| lim |
| n→∞ |
b+
| ||
1+
|
∴b=1
则
| lim |
| n→∞ |
| an2+bn+2 |
| n2-9 |
| lim |
| n→∞ |
| n+2 |
| n2-9 |
| lim |
| n→∞ |
| ||||
1-
|
故选B
点评:本题主要考查了极限的存在的条件的应用及极限的求解,解答本题的关键是由已知极限的存在的条件求出a,b的值
练习册系列答案
相关题目
若实数a、b满足a+b=2则2a+2b的最小值是( )
| A、8 | |||
| B、4 | |||
C、2
| |||
D、2
|
若实数a,b满足a>b,则下列不等式成立的是( )
| A、|a|>|b| | ||||
| B、a3>b3 | ||||
C、
| ||||
| D、ab2>b3 |