题目内容
设O为坐标原点,F1,F2是双曲线A.x±
B.
C.x±
D.
【答案】分析:假设|F1P|=x,进而分别根据中线定理和余弦定理建立等式求得c2+5a2=14a2-2c2,求得a和c的关系,进而根据b=
求得a和的关系进而求得渐进线的方程.
解答:解:假设|F1P|=x
OP为三角形F1F2P的中线,
根据三角形中线定理可知
x2+(2a+x)2=2(c2+7a2)
整理得x(x+2a)=c2+5a2
由余弦定理可知
x2+(2a+x)2-x(2a+x)=4c2
整理得x(x+2a)=14a2-2c2
进而可知c2+5a2=14a2-2c2
求得3a2=c2
∴c=
a
b=
a
那么渐近线为y=±
x,即
x±y=0
故选D
点评:本题将解析几何与三角知识相结合,主要考查了双曲线的定义、标准方程,几何图形、几何性质、渐近线方程,以及斜三角形的解法,属中档题
解答:解:假设|F1P|=x
OP为三角形F1F2P的中线,
根据三角形中线定理可知
x2+(2a+x)2=2(c2+7a2)
整理得x(x+2a)=c2+5a2
由余弦定理可知
x2+(2a+x)2-x(2a+x)=4c2
整理得x(x+2a)=14a2-2c2
进而可知c2+5a2=14a2-2c2
求得3a2=c2
∴c=
b=
那么渐近线为y=±
故选D
点评:本题将解析几何与三角知识相结合,主要考查了双曲线的定义、标准方程,几何图形、几何性质、渐近线方程,以及斜三角形的解法,属中档题
练习册系列答案
相关题目
设O为坐标原点,F1,F2是双曲线
-
=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=
a,则该双曲线的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 10 |
A、x±
| ||
B、
| ||
C、x±
| ||
D、
|