题目内容
数列{an}满足的前n项和Sn=2n-an,n∈N*
(1)计算数列{an}的前4项;
(2)猜想an的表达式,并证明;
(3)求数列{n•an}的前n项和Tn.
(1)计算数列{an}的前4项;
(2)猜想an的表达式,并证明;
(3)求数列{n•an}的前n项和Tn.
(1)计算得:a1=1,a2=
,a3=
,a4=
.(3分)
(2)∵sn=2n-an当n≥2时
∴sn-1=2(n-1)-an-1两式相减可得:an=2-an+an-1即:
∵a n=
an-1+1?a n-2=
(an-1-2)
所以,数列{an-2}是首项为a1-2=-1公比为
的等比数列
∵a n-2=(-1)•(
)n-1?a n=2-(
)n-1
即an=
(7分)
当n=1时,a1=1,
∴an=
,
(3)因为n•an=2n-n•(
)n-1
设数列{n•(
)n-1}的前n项和为MnMn
=1•(
)0+2•(
)1+3•(
)2+n•(
)n-1
Mn
=1•(
)1+2•(
)2+(n-1)•(
)n-1+n•(
)n
两式相减可得:
Mn=(
)0+(
)1+(
)2++(
)n-1-n•(
)n
=
-n•(
)n=2-(
)n-n•(
)n
=2-(n+1)•(
)nMn
=4-(n+1)•(
)n+1(12分)
| 3 |
| 2 |
| 7 |
| 4 |
| 15 |
| 8 |
(2)∵sn=2n-an当n≥2时
∴sn-1=2(n-1)-an-1两式相减可得:an=2-an+an-1即:
∵a n=
| 1 |
| 2 |
| 1 |
| 2 |
所以,数列{an-2}是首项为a1-2=-1公比为
| 1 |
| 2 |
∵a n-2=(-1)•(
| 1 |
| 2 |
| 1 |
| 2 |
即an=
| 2n-1 |
| 2n-1 |
当n=1时,a1=1,
∴an=
| 2n-1 |
| 2n-1 |
(3)因为n•an=2n-n•(
| 1 |
| 2 |
设数列{n•(
| 1 |
| 2 |
=1•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减可得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
1-(
| ||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=2-(n+1)•(
| 1 |
| 2 |
=4-(n+1)•(
| 1 |
| 2 |
练习册系列答案
相关题目