题目内容
一台机器由于使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
若y与x具有线性相关关系,则相关系数r的取值范围是多少?你能对它们进行相关性检验吗?
解:查表得与自由度4-2相应的相关系数临界值r0.05=0.950,所以y与x若具有线性相关关系,则相关系数r的取值范围是(0.950,1).
由计算器可求得:(1)
=12.5,
=8.25,
xiyi=438,4
=421.5,
xi2=660,
yi2=291.所以
r=![]()
=
=
=
=0.995.查临界值表4-2=2的r0.05=0.950.因为r>r0.05,所以y与x有线性相关关系.
【探究1】如果y与x有线性相关关系,求上面的回归直线方程.
解:b=![]()
=
=0.728 6.
a=
-b
=8.25-0.728 6×12.5
=-0.857 5.
∴所求回归直线方程为
=0.728 6x-0.857 5.
【探究2】若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?
解:要使
≤10
0.728 6x-0.857 5≤10.所以x≤14.901 9.所以机器的转速应控制在14.901 9转/秒以下.
| 转速x(转/s) | 18 | 16 | 14 | 12 |
| 每小时生产有缺损零件数y(件) | 11 | 9 | 7 | 5 |
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:
|
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,写出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度就控制在什么范围内?
一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:
|
转速x(转/秒) |
16 |
14 |
12 |
8 |
|
每小时生产缺损零件数y(件) |
11 |
9 |
8 |
5 |
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?
| 转速x(转/s) | 18 | 16 | 14 | 12 |
| 每小时生产有缺损零件数y(件) | 11 | 9 | 7 | 5 |
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:
一台机器由于使用时间较长,生产的零件有一些会有缺损.按不同转速生产出来的零件有缺损的统计数据如下:
|
转速x(转/s) |
18 |
16 |
14 |
12 |
|
每小时生产有缺损零件数y(件) |
11 |
9 |
7 |
5 |
(Ⅰ)作出散点图;
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转
速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:![]()