题目内容
已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且
分析:首先需求出an、bn的表达式,以确定所求极限的表达式,为此,关键在于求出两个数列的公差,“b2是a2与a3的等差中项”已给出一个等量关系,“an与bn之比的极限为
”又给出了另一个等量关系,故可考虑先设出公差用二元方程组求解.
解:设{an}、{bn}的公差分别为d1、d2,
∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),
∴2d2-3d1=2.①
又![]()
即d2=2d1,②
联立①②解得d1=2,d2=4.
∴an=a1+(n-1)d1=3+(n-1)·2=2n+1,
bn=b1+(n-1)d2=2+(n-1)·4=4n-2.
![]()
练习册系列答案
相关题目