题目内容
已知f(x)=4cosxsin(x+
)-1
(1)求f(x)的对称中心点;
(2)求f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 6 |
(1)求f(x)的对称中心点;
(2)求f(x)在区间[-
| π |
| 6 |
| π |
| 4 |
分析:利用二倍角公式及辅角公式化为f(x)=2sin(2x+
)
(1)由2x+
=kπ得对称中心横坐标x=
-
( k∈Z),纵坐标为0
(2)将2x+
视为整体,求出范围.再利用三角函数的性质得出最值.
| π |
| 6 |
(1)由2x+
| π |
| 6 |
| kπ |
| 2 |
| π |
| 12 |
(2)将2x+
| π |
| 6 |
解答:解:f(x)=4cosxsin(x+
)-1
=4cosx(sinx×
+cosx×
)-1
=
sin2x+2cos2x-1
=
sin2x+cos2x
=2sin(2x+
)
(1)由2x+
=kπ得x=
-
( k∈Z),对称中心点为(
-
,0),( k∈Z)
(2)当x∈[-
,
]时,2x+
∈[-
,
]
sin(2x+
)max=1,sin(2x+
)min=-
所以f(x)max=2×1=2
f(x)min=2×(-
)=-1
| π |
| 6 |
=4cosx(sinx×
| ||
| 2 |
| 1 |
| 2 |
=
| 3 |
=
| 3 |
=2sin(2x+
| π |
| 6 |
(1)由2x+
| π |
| 6 |
| kπ |
| 2 |
| π |
| 12 |
| kπ |
| 2 |
| π |
| 12 |
(2)当x∈[-
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
sin(2x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
所以f(x)max=2×1=2
f(x)min=2×(-
| 1 |
| 2 |
点评:本题考查二倍角公式及辅角公式的应用,三角函数的图象与性质,属于常规知识和能力.
练习册系列答案
相关题目