题目内容
已知f(x)=cos(2x-
)+cos(2x-
)-2cos2x+1,
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 6 |
| 5π |
| 6 |
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
分析:(1)利用两角差的余弦公式和二倍角的余弦公式,化简得f(x)=
sin(2x-
),再由三角函数周期公式即可算出f(x)的最小正周期;
(2)由x∈[-
,
]算出2x-
∈[-
,
],结合正弦函数的图象与性质,即可求出函数在[-
,
]上的最大值和最小值.
| 2 |
| π |
| 4 |
(2)由x∈[-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解:(1)根据题意,得
f(x)=cos(2x-
)+cos(2x-
)-2cos2x+1
=sin2x-cos2x=
sin(2x-
)
∴T=
=π,即f(x)的最小正周期为π;
(2)当x∈[-
,
]时,2x∈[-
,
],
∴2x-
∈[-
,
],可得sin(2x-
)∈[-1,
]
∴f(x)在区间[-
,
]上的最大值为1,最小值为-
.(12分)
f(x)=cos(2x-
| π |
| 6 |
| 5π |
| 6 |
=sin2x-cos2x=
| 2 |
| π |
| 4 |
∴T=
| 2π |
| 2 |
(2)当x∈[-
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
∴2x-
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
∴f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
| 2 |
点评:本题给出三角函数表达式,求函数的最小正周期和闭区间上的最值.着重考查了三角恒等变换应用、三角函数的图象与性质和函数值域求法等知识,属于中档题.
练习册系列答案
相关题目