题目内容
已知f(x)=sin2(ωx+
)-
sin(ωx+
)sin(ωx-
)-
(ω>0)在区间[-
,
]上的最小值为-1,则ω的最小值为
.
| π |
| 12 |
| 3 |
| π |
| 12 |
| 5π |
| 12 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
分析:由三角函数的倍角公式把f(x)=sin2(ωx+
)-
sin(ωx+
)sin(ωx-
)-
等价转化为y=
sin(2ωx+
)-
cos(2ωx+
),再由三角函数的和(差)角公式进一步等价转化为y=sin2ωx.因为x∈[-
,
],所以2ωx∈[-
,
],再由f(x)在区间[-
,
]上的最小值为-1,得到-
=-
,或
=
,由此能够求出ω的最小值.
| π |
| 12 |
| 3 |
| π |
| 12 |
| 5π |
| 12 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 8 |
| ωπ |
| 3 |
| ωπ |
| 4 |
| π |
| 6 |
| π |
| 8 |
| ωπ |
| 3 |
| π |
| 2 |
| ωπ |
| 4 |
| 3π |
| 2 |
解答:解:∵ω>0,
∴f(x)=sin2(ωx+
)-
sin(ωx+
)sin(ωx-
)-
=
+
sin(ωx+
)cos(ωx+
)-
=
+
sin(2ωx+
)-
=
sin(2ωx+
)-
cos(2ωx+
)
=sin2ωx.
∵x∈[-
,
],
∴2ωx∈[-
,
],
∵f(x)在区间[-
,
]上的最小值为-1,
∴-
≤-
,或
≥
,
解得ω≥
,或ω≥6,
∴ω的最小值=
.
故答案为:
.
∴f(x)=sin2(ωx+
| π |
| 12 |
| 3 |
| π |
| 12 |
| 5π |
| 12 |
| 1 |
| 2 |
=
1-cos(2ωx+
| ||
| 2 |
| 3 |
| π |
| 12 |
| π |
| 12 |
| 1 |
| 2 |
=
1-cos(2ωx+
| ||
| 2 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
=sin2ωx.
∵x∈[-
| π |
| 6 |
| π |
| 8 |
∴2ωx∈[-
| ωπ |
| 3 |
| ωπ |
| 4 |
∵f(x)在区间[-
| π |
| 6 |
| π |
| 8 |
∴-
| ωπ |
| 3 |
| π |
| 2 |
| ωπ |
| 4 |
| 3π |
| 2 |
解得ω≥
| 3 |
| 2 |
∴ω的最小值=
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
点评:本题考查正弦型曲线的图象和性质,综合性强,难度大,容易出错.解题时要认真审题,注意三角函数的倍角公式、和(差)角公式的灵活运用.
练习册系列答案
相关题目
已知f(x)=sin(2x-
)-2m在x∈[0,
]上有两个零点,则m的取值范围为( )
| π |
| 6 |
| π |
| 2 |
A、(
| ||||
B、[
| ||||
C、[
| ||||
D、(
|
已知f(x)=sin(x+
),g(x)=cos(x-
),则下列结论中正确的是( )
| π |
| 2 |
| π |
| 2 |
| A、函数y=f(x)•g(x)的周期为2 | ||
| B、函数y=f(x)•g(x)的最大值为1 | ||
C、将f(x)的图象向左平移
| ||
D、将f(x)的图象向右平移
|