ÌâÄ¿ÄÚÈÝ
(Àí)Èçͼ,ÑØºÓ±ßAB½¨Ò»Ë®Õ¾P¹©¼×¡¢ÒÒÁ½¸öѧУ¹²Í¬Ê¹ÓÃ,ÒÑ֪ѧУ¼×ÀëºÓ±ß1ǧÃ×,ÒÒѧУÀëºÓ±ß2ǧÃ×,¶ø¼×¡¢ÒÒÁ½Ð£Ïà¾à![]()
(1)ÉèPA=x(x£¾0),ÊÔ½«x±íʾ³ÉËÍË®ÐèÒªµÄË®¹Ü×ܳ¤yµÄº¯Êý;
(2)ÎÊˮվP½¨ÔÚʲôλÖÃ,¹ºÂòË®¹ÜµÄ·ÑÓÃ×îµÍ?
(ÎÄ)½«Ò»ÕÅ2¡Á6Ã×µÄÓ²¸Ö°å°´Í¼Ö½µÄÒªÇó½øÐвÙ×÷,ÑØÏß²ÃÈ¥ÒõÓ°²¿·Ö,°ÑÊ£Óಿ·Ö°´ÒªÇ󺸽ӳÉÒ»¸öÓиǵij¤·½ÌåË®Ïä(ÆäÖТÙÓë¢Û¡¢¢ÚÓë¢Ü·Ö±ðÊÇÈ«µÈµÄ¾ØÐÎ,ÇÒ¢Ý+¢Þ=¢ß),ÉèË®ÏäµÄ¸ßΪxÃ×,ÈÝ»ýΪyÁ¢·½Ã×.
![]()
(1)Çóy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½;
(2)ÈçºÎÉè¼ÆxµÄ´óС,ʹµÃË®Ïä×°µÄË®×î¶à?
´ð°¸£º(Àí)½â:(1)ÓÉÌâÒâ,AB=3,CP=
,DP=
£¬
¹Êy=
(0£¼x£¼3).
(2)y¡ä=
=0,
¼´
,Á½±ßƽ·½,µÃ
,
»¯¼ò,µÃx2+2x-3=0,ËùÒÔx=1.(x=-3ÉáÈ¥)ËùÒÔx=1ʱ¹ºÂòË®¹ÜµÄ·ÑÓÃ×îµÍ.
(ÎÄ)½â£º(1)ÉèË®ÏäµÄ¸ßΪx(Ã×),ÔòË®Ïäµ×Ãæ¢ßµÄ³¤¡¢¿í·Ö±ðΪ
=3-x(Ã×)¡¢
=1-x(Ã×).
¹ÊË®ÏäµÄÈÝ»ýΪy=x(3-x)(1-x)=x3-4x2+3x(0£¼x£¼1).
(2)ÓÉy¡ä=3x2-8x+3=0,µÃx=
£¬ËùÒÔy=x3-4x2+3x(0£¼x£¼1)ÔÚ(0,
)Éϵ¥µ÷µÝÔö,ÔÚ(
,1)Éϵ¥µ÷µÝ¼õ.ËùÒÔx=
ʱˮÏäµÄÈÝ»ý×î´ó.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿