题目内容
已知sin(π-α)=
,α∈(0,
).
(1)求sin2α-cos2
的值;
(2)求函数f(x)=
cosαsin2x-
cos2x的单调递增区间.
| 4 |
| 5 |
| π |
| 2 |
(1)求sin2α-cos2
| α |
| 2 |
(2)求函数f(x)=
| 5 |
| 6 |
| 1 |
| 2 |
∵sin(π-α)=
,∴sinα=
.
又∵α∈(0,
),∴cosα=
.
(1)sin2α-cos2
=2sinαcosα-
=2×
×
-
=
.
(2)f(x)=
×
sin2x-
cos2x
=
sin(2x-
).
令2kπ-
≤2x-
≤2kπ+
,k∈Z,
得kπ-
≤x≤kπ+
π,k∈Z.
∴函数f(x)的单调递增区间为[kπ-
,kπ+
π],k∈Z.
| 4 |
| 5 |
| 4 |
| 5 |
又∵α∈(0,
| π |
| 2 |
| 3 |
| 5 |
(1)sin2α-cos2
| α |
| 2 |
=2sinαcosα-
| 1+cosα |
| 2 |
=2×
| 4 |
| 5 |
| 3 |
| 5 |
1+
| ||
| 2 |
| 4 |
| 25 |
(2)f(x)=
| 5 |
| 6 |
| 3 |
| 5 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
令2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
得kπ-
| π |
| 8 |
| 3 |
| 8 |
∴函数f(x)的单调递增区间为[kπ-
| π |
| 8 |
| 3 |
| 8 |
练习册系列答案
相关题目