题目内容
现有三枚外观一致的硬币,其中两枚是均匀硬币另一枚是不均匀的硬币,这枚不均匀的硬币抛出后正面出现的概率为
.现投掷这三枚硬币各1次,设ξ为得到的正面个数,则随机变量ξ的数学期望Eξ=
.
| 2 |
| 3 |
| 5 |
| 3 |
| 5 |
| 3 |
分析:由题设知ξ=0,1,2,3.P(ξ=0)=(1-
)×(1-
)×(1-
)=
,P(ξ=1)=
×(1-
)×(1-
)+(1-
)×
×(1-
)+(1-
)×(1-
)×
=
,P(ξ=3)=
×
×
=
,P(ξ=2)=1-
-
=
,由此能够求出Eξ.
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 12 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 3 |
| 5 |
| 12 |
解答:解:由题设知ξ=0,1,2,3
∵P(ξ=0)=(1-
)×(1-
)×(1-
)=
,
P(ξ=1)=
×(1-
)×(1-
)+(1-
)×
×(1-
)+(1-
)×(1-
)×
=
,
P(ξ=3)=
×
×
=
,
∴P(ξ=2)=1-
-
=
,
∴Eξ=0×
+1×
+2×
+3×
=
.
故答案为:
.
∵P(ξ=0)=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 12 |
P(ξ=1)=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
P(ξ=3)=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 6 |
∴P(ξ=2)=1-
| 1 |
| 12 |
| 1 |
| 3 |
| 5 |
| 12 |
∴Eξ=0×
| 1 |
| 12 |
| 1 |
| 3 |
| 5 |
| 12 |
| 1 |
| 6 |
| 5 |
| 3 |
故答案为:
| 5 |
| 3 |
点评:本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.
练习册系列答案
相关题目