题目内容

精英家教网如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,
且AB=AA1,D,E,F分别是B1A,CC1,BC的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1F⊥平面AEF;
(3)设AB=a,求三棱锥D-AEF的体积.
分析:(1)取AB中点O,连接CO,DO,根据中点寻找平行线即可;
(2)易证AF⊥B1F,在根据勾股定理的逆定理证明B1F⊥EF;
(3)由于点D是线段AB1的中点,故点D到平面AEF的距离是点B1到平面AEF距离的
1
2
,求出高按照三棱锥的体积公式计算即可.
解答:精英家教网解:(1)取AB中点O,连接CO,DO
DO∥AA1,DO=
1
2
AA1
,∴DO∥CE,DO=CE,
∴平行四边形DOCE,∴DE∥CO,DE?平面ABC,CO?平面ABC,
∴DE∥平面ABC.(4分)
(2)等腰直角三角形△ABC中F为斜边的中点,∴AF⊥BC
又∵直三棱柱ABC-A1B1C1,∴面ABC⊥面BB1C1C,∴AF⊥面C1B,∴AF⊥B1F
设AB=AA1=1,∴B1F=
6
2
,EF=
3
2
B1E=
3
2
,∴B1F2+EF2=B1E2,∴B1F⊥EF
又AF∩EF=F,∴B1F⊥面AEF.(8分)
(3)由于点D是线段AB1的中点,故点D到平面AEF的距离是点B1到平面AEF距离的
1
2
B1F=
a2+(
2
2
a)
2
=
6
2
a
,所以三棱锥D-AEF的高为
6
4
a
;在Rt△AEF中,EF=
3
2
a,AF=
2
2
a
,所以三棱锥D-AEF的底面面积为
6
8
a2
,故三棱锥D-AEF的体积为
1
3
×
6
8
a2×
6
4
a=
1
16
a3
.(12分)
点评:立体几何中的中点与中点之间可以产生平行线,当问题涉及到中点时可以通过再找其中的中点作出辅助线;垂直关系的证明,关键是线线垂直的证明,基本方法是通过线面垂直证明线线垂直、计算证明线线垂直;在计算三棱锥体积时,一个技巧是更换顶点便于求出其高、一个是借助于顶点与其它点的关系求出其高度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网