题目内容

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.
分析:(1)依题意,易证AD⊥平面BCC1B1,利用线面垂直的性质定理即可证得AD⊥BC1
(2)取C1B1的中点E,连接A1E,ED,易证平面A1EC∥平面AB1D,利用面面平行的性质即可证得A1C∥平面AB1D.
解答:证明:(1)∵ABC-A1B1C1为三棱柱,D是BC中点,AA1⊥平面ABC,AD?平面ABC,
∴AA1⊥AD;又AA1∥BB1
∴AD⊥BB1
又底面ABC为正三角形,D是BC中点,
∴AD⊥BC,而BC∩BB1=B,
∴AD⊥平面BCC1B1,BC1?平面BCC1B1
∴AD⊥BC1
(2))取C1B1的中点E,连接A1E,ED,

则B1E
.
DC,
∴四边形B1DCE为平行四边形,于是有B1D∥EC,又A1E∥AD,B1D∩AD=D,A1E∩EC=E,
∴平面A1EC∥平面AB1D,A1C?平面A1EC,
∴A1C∥平面AB1D.
点评:本题考查直线与平面垂直的性质,考查面面平行的性质,(2)中证得平面A1EC1∥平面AB1D是关键,考查作图、推理与证明的逻辑思维能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网