题目内容

4.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=${2}^{n}-\frac{1}{{2}^{n-1}}+1$尺.

分析 根据题意可知,大老鼠和小老鼠打洞的距离为等比数列,根据等比数列的前n项和公式,求得Sn

解答 解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,
前n天打洞之和为$\frac{1-{2}^{n}}{1-2}$=2n-1,
同理,小老鼠每天打洞的距离$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$,
∴Sn=2n-1+2-$\frac{1}{{2}^{n-1}}$=${2}^{n}-\frac{1}{{2}^{n-1}}+1$,
故答案为:=${2}^{n}-\frac{1}{{2}^{n-1}}+1$.

点评 本题考查求等比数列的前n项和公式,要认真审题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网