题目内容
【题目】已知函数
.
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥
x3+1,求a的取值范围.
【答案】(1)当
时,
单调递减,当
时,
单调递增.(2)![]()
【解析】
(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.
(2)首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.
(1)当
时,
,
,
由于
,故
单调递增,注意到
,故:
当
时,
单调递减,
当
时,
单调递增.
(2)由
得,
,其中
,
①.当x=0时,不等式为:
,显然成立,符合题意;
②.当
时,分离参数a得,
,
记
,
,
令
,
则
,
,
故
单调递增,
,
故函数
单调递增,
,
由
可得:
恒成立,
故当
时,
,
单调递增;
当
时,
,
单调递减;
因此,
,
综上可得,实数a的取值范围是
.
【题目】随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每个人每日健步的步数,从而为科学健身提供一定的帮助.某市工会为了解该市市民每日健步走的情况,从本市市民中随机抽取了2000名市民(其中不超过40岁的市民恰好有1000名),利用手机计步软件统计了他们某天健步的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组(单位;千步),将抽取的不超过40岁的市民的样本数据绘制成频率分布直方图如图,将40岁以上的市民的样本数据绘制成频数分布表如下,并利用该样本的频率分布估计总体的概率分布.
![]()
分组(单位 千步) |
|
|
|
|
|
|
|
|
|
频数 | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)现规定,日健步步数不低于13000步的为“健步达人”,填写下面列联表,并根据列联表判断能否有99.9%的把握认为是否为“健步达人”与年龄有关;
健步达人 | 非健步达人 | 总计 | |
40岁以上的市民 | |||
不超过40岁的市民 | |||
总计 |
(2)利用样本平均数和中位数估计该市不超过40岁的市民日健步步数(单位:千步)的平均数和中位数;
(3)若日健步步数落在区间
内,则可认为该市民”运动适量”,其中
,
分别为样本平均数和样本标准差,计算可求得频率分布直方图中数据的标准差
约为3.64.若一市民某天的健步步数为2万步,试判断该市民这天是否“运动适量”?
参考公式:![]()
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |