题目内容
设{an}是等比数列,公比q=
,Sn为{an}的前n项和.记Tn=
,n∈N*.设Tn0为数列{Tn}的最大项,则n0=______.
| 2 |
| 17Sn-S2n |
| an+1 |
Tn =
=
•
=
•[(
)n+
-17]
因为(
)n+
≧8,当且仅当(
)n=4,
即n=4时取等号,所以当n0=4时Tn有最大值.
| ||||||||||||
a1(
|
=
| 1 | ||
1-
|
(
| ||||
(
|
=
| 1 | ||
1-
|
| 2 |
| 16 | ||
(
|
因为(
| 2 |
| 16 | ||
(
|
| 2 |
即n=4时取等号,所以当n0=4时Tn有最大值.
练习册系列答案
相关题目