ÌâÄ¿ÄÚÈÝ
ijÆóÒµÔÚ¼õÔ±ÔöЧ»î¶¯ÖжԲ¿·ÖÔ±¹¤ÊµÐÐÇ¿ÖÆÏ¸ڣ¬¹æ¶¨Ï¸ÚÔ±¹¤ÔÚµÚÒ»Äê¿ÉÁìÈ¡ÔÚÖ°Ô±¹¤ÊÕÈë°Ù·ÖÖ®°Ù£¬Ö®ºóÿÄêËùÁìÈ¡µÄ±ÈÀýÖ»ÓÐÈ¥ÄêµÄ
£¬¸ù¾ÝÆóÒµ¹æ»®Ê¦Ô¤²â£¬¼õÔ±Ö®ºó£¬¸ÃÆóÒµµÄÀûÈóÔö¼Ó¿ÉʹµÃÔÚÖ°Ô±¹¤µÄÊÕÈëµÃµ½Ìá¸ß£¬Èôµ±ÄêµÄÄêÊÕÈëaÍòÔª£¬Ö®ºóÿÄ꽫Ôö³¤kaÍòÔª£®
£¨1£©µ±k=
ʱ£¬µ½µÚnÄêϸÚÔ±¹¤¿É´Ó¸ÃÆóÒµ»ñµÃ×ÜÊÕÈëΪ¶àÉÙ£¿
£¨2£©Ä³Î»Ï¸ÚÔ±¹¤Ç¡ºÃÔÚµÚmÄêÔÚ¸ÃÆóÒµËùµÃ±ÈÈ¥ÄêÉÙ£¬ÇómµÄ×î´óÖµ¼°´ËʱkµÄȡֵ·¶Î§£¿
| 2 |
| 3 |
£¨1£©µ±k=
| 1 |
| 4 |
£¨2£©Ä³Î»Ï¸ÚÔ±¹¤Ç¡ºÃÔÚµÚmÄêÔÚ¸ÃÆóÒµËùµÃ±ÈÈ¥ÄêÉÙ£¬ÇómµÄ×î´óÖµ¼°´ËʱkµÄȡֵ·¶Î§£¿
·ÖÎö£º£¨1£©ÏÈÇó³öϸÚÔ±¹¤µÚnÄê´Ó¸ÃÆóÒµÊÕÈ룬ÔÙÀûÓôíλÏà¼õ·¨ÇóºÍ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©bn=an+1-an£¬ÀûÓÃijλϸÚÔ±¹¤Ç¡ºÃÔÚµÚmÄêÔÚ¸ÃÆóÒµËùµÃ±ÈÈ¥ÄêÉÙ£¬½¨Á¢²»µÈʽ£¬¼´¿ÉÇóµÃ½áÂÛ£®
£¨2£©bn=an+1-an£¬ÀûÓÃijλϸÚÔ±¹¤Ç¡ºÃÔÚµÚmÄêÔÚ¸ÃÆóÒµËùµÃ±ÈÈ¥ÄêÉÙ£¬½¨Á¢²»µÈʽ£¬¼´¿ÉÇóµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÉèϸÚÔ±¹¤µÚnÄê´Ó¸ÃÆóÒµÊÕÈëΪanÍòÔª£¬Ôò¾ÝÌâÒâan=£¨
£©n-1[1+£¨n-1£©
]a ¡£¨2·Ö£©
ÉèSn=a1+a2+¡+an=[1+
+¡+£¨
£©n-1]a+
[
+¡+£¨n-1£©£¨
£©n-1]a
ÓÉ´íλÏà¼õ·¨¿ÉµÃ£ºSn=
[6-£¨n+6£©£¨
£©n]a
¡àµ½µÚnÄêϸÚÔ±¹¤¿É´Ó¸ÃÆóÒµ»ñµÃÊÕÈë
[6-£¨n+6£©£¨
£©n]aÍòÔª£®£¨5·Ö£©
£¨2£©Áîbn=an+1-an=£¨
£©n[1+nk]a-£¨
£©n-1[1+£¨n-1£©k]a=
[£¨3-n£©k-1]a£¨7·Ö£©
¾ÝÌâÒâ
µ±n£¼m-1ʱ£¬bn¡Ý0£¬¼´£¨3-n£©k-1¡Ý0£»¢Ù
µ±n=m-1ʱ£¬bn£¼0£¬¼´£¨4-m£©k-1£¼0£» ¢Ú£¨10·Ö£©
µ±m¡Ý4ʱ£¬¢Úʽ×ܳÉÁ¢£¬¼´´ÓµÚ4Ä꿪ʼϸÚÔ±¹¤×ÜÊÇ´Ó¸ÃÆóÒµËùµÃ±äÉÙ£»
¡àm×î´óÖµ=4£» £¨12·Ö£©
½«m=4´úÈë¢ÙʽµÃn£¼3ʱ£¬£¨3-n£©k-1¡Ý0ºã³ÉÁ¢£»¡ßk£¾0
¡à[£¨3-n£©k-1]×îСֵ=k-1¡Ý0
¡àk¡Ý1
¡àmµÄ×î´óֵΪ4£¬´Ëʱ k¡Ý1£®¡£¨14·Ö£©
| 2 |
| 3 |
| 1 |
| 4 |
ÉèSn=a1+a2+¡+an=[1+
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 3 |
| 2 |
| 3 |
ÓÉ´íλÏà¼õ·¨¿ÉµÃ£ºSn=
| 3 |
| 4 |
| 2 |
| 3 |
¡àµ½µÚnÄêϸÚÔ±¹¤¿É´Ó¸ÃÆóÒµ»ñµÃÊÕÈë
| 3 |
| 4 |
| 2 |
| 3 |
£¨2£©Áîbn=an+1-an=£¨
| 2 |
| 3 |
| 2 |
| 3 |
| 2n-1 |
| 3n |
¾ÝÌâÒâ
µ±n£¼m-1ʱ£¬bn¡Ý0£¬¼´£¨3-n£©k-1¡Ý0£»¢Ù
µ±n=m-1ʱ£¬bn£¼0£¬¼´£¨4-m£©k-1£¼0£» ¢Ú£¨10·Ö£©
µ±m¡Ý4ʱ£¬¢Úʽ×ܳÉÁ¢£¬¼´´ÓµÚ4Ä꿪ʼϸÚÔ±¹¤×ÜÊÇ´Ó¸ÃÆóÒµËùµÃ±äÉÙ£»
¡àm×î´óÖµ=4£» £¨12·Ö£©
½«m=4´úÈë¢ÙʽµÃn£¼3ʱ£¬£¨3-n£©k-1¡Ý0ºã³ÉÁ¢£»¡ßk£¾0
¡à[£¨3-n£©k-1]×îСֵ=k-1¡Ý0
¡àk¡Ý1
¡àmµÄ×î´óֵΪ4£¬´Ëʱ k¡Ý1£®¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐ֪ʶµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿