题目内容
设函数f(x)=xm+ax的导函数为f′(x)=2x+1,数列{
}(n∈N*)的前n项和为Sn,则
Sn=( )
| 1 |
| f(n) |
| lim |
| n→∞ |
| A.1 | B.
| C.0 | D.不存在 |
∵f′(x)=mxm-1+a=2x+1,∴m=2,a=1.
∴
=
=
-
,
∴Sn=(1-
)+(
-
) +…+(
-
)=
,
∴
Sn=
=1.
故选A.
∴
| 1 |
| f(n) |
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| n |
| n+1 |
故选A.
练习册系列答案
相关题目