题目内容
如果三条直线mx+y+3=0,x-y-2=0,2x-y+2=0不能成为一个三角形三边所在的直线,那么m的值是______.
①mx+y+3=0与x-y-2=0平行时,m=-1,此时满足题意,所以m=-1;
②mx+y+3=0与2x-y+2=0平行时,m=-2,此时满足题意,所以m=-2;
③联立x-y-2=0,2x-y+2=0得
,解得:
,
即x-y-2=0与2x-y+2=0的交点坐标为(-4,-6),
根据题意所求直线过(-4,-6),
代入得m=-
,
综上m的值是-1或-2或-
.
②mx+y+3=0与2x-y+2=0平行时,m=-2,此时满足题意,所以m=-2;
③联立x-y-2=0,2x-y+2=0得
|
|
即x-y-2=0与2x-y+2=0的交点坐标为(-4,-6),
根据题意所求直线过(-4,-6),
代入得m=-
| 3 |
| 4 |
综上m的值是-1或-2或-
| 3 |
| 4 |
练习册系列答案
相关题目