题目内容

5.若tanθ=1,则sin2θ的值为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 原式利用二倍角的正弦函数公式化简,分母看做“1”,利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.

解答 解:∵tanθ=1,
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{ta{n}^{2}θ+1}$=1.
故选:B.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网