题目内容
5.若tanθ=1,则sin2θ的值为( )| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 原式利用二倍角的正弦函数公式化简,分母看做“1”,利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.
解答 解:∵tanθ=1,
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{ta{n}^{2}θ+1}$=1.
故选:B.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
20.设△ABC的内角A,B,C所对的边长分别为a,b,c,且atanB=$\frac{20}{3}$,bsinA=4,则a等于( )
| A. | 3 | B. | $\frac{8}{3}$ | C. | 4 | D. | 5 |
10.在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,若数列{xn}的周期为3,则{xn}的前2014项的和为( )
| A. | 1344 | B. | 1343 | C. | 1224 | D. | 1223 |
17.
如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
| A. | 2$\sqrt{5}$ | B. | 2$\sqrt{6}$ | C. | 4$\sqrt{2}$ | D. | 4$\sqrt{3}$ |
14.若|$\overrightarrow{e}$|=1,且$\overrightarrow{a}⊥\overrightarrow{e}$,|$\overrightarrow{a}$|=2,则|4$\overrightarrow{a}-\overrightarrow{e}$|=( )
| A. | $\sqrt{37}$ | B. | $\sqrt{65}$ | C. | 8 | D. | $\sqrt{13}$ |