题目内容
如果数列{an}满足a1=2,a2=1,且
=
(n≥2),则a100=( )
| anan-1 |
| an-1-an |
| anan+1 |
| an-an+1 |
分析:要求a100,只要根据已知递推公式求出通项即可,而由
=
整理可得
+
=2,结合a1=2,a2=1可求an,从而可求
| anan-1 |
| an-1-an |
| anan+1 |
| an-an+1 |
| an |
| an-1 |
| an |
| an+1 |
解答:解:∵
=
∴
+
=2
∵a1=2,a2=1
∴
+
=
,
=
,
-
=
{
}是等差数列,首项为
,公差为
∴
+ =
+
(n-1)=
n
∴an=
∴a100=
=
故选:D
| anan-1 |
| an-1-an |
| anan+1 |
| an-an+1 |
∴
| an |
| an-1 |
| an |
| an+1 |
∵a1=2,a2=1
∴
| 1 |
| an-1 |
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 2 |
| n |
∴a100=
| 2 |
| 100 |
| 1 |
| 50 |
故选:D
点评:本题主要考查了由数列的递推公式求解数列的通项公式,解题中用到了等差中项判断等差数列的方法:即由
+
=
可得{
}是等差数列
| 1 |
| an-1 |
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| an |
练习册系列答案
相关题目