题目内容
如果数列{an}满足a1=2,a2=1,且
=
,则此数列的第10项为( )
an•
| ||
| an-1-an |
| an•an+1 |
| an-an+1 |
分析:把已知的递推式取倒数,得到新数列{
-
}构成以
-
为首项,以1为公比的等比数列.求出该等比数列的通项后利用累加法可得数列{an}的第10项.
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a2 |
| 1 |
| a1 |
解答:解:由
=
,得
=
,
∴
-
=
-
,
即
=1.
∴{
-
}构成以
-
为首项,以1为公比的等比数列.
∵a1=2,a2=1,∴
-
=1-
=
.
则
-
=
×1n=
.
∴
-
=
.
-
=
.
…
-
=
.
累加得:
=
+
=
+
=5.
∴a10=
.
故选:D.
an•
| ||
| an-1-an |
| an•an+1 |
| an-an+1 |
| an-1-an |
| an•an-1 |
| an-an+1 |
| an•an+1 |
∴
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1 |
| 1 |
| an |
即
| ||||
|
∴{
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a2 |
| 1 |
| a1 |
∵a1=2,a2=1,∴
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
则
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| 2 |
…
| 1 |
| a10 |
| 1 |
| a9 |
| 1 |
| 2 |
累加得:
| 1 |
| a10 |
| 1 |
| a1 |
| 9 |
| 2 |
| 1 |
| 2 |
| 9 |
| 2 |
∴a10=
| 1 |
| 5 |
故选:D.
点评:本题考查了数列递推式,考查了数列构造法,训练了累加法求数列的和,是中档题.
练习册系列答案
相关题目