题目内容
【题目】下列有四个关于命题的判断,其中正确的是()
A.命题“
,
”是假命题
B.命题“若
,则
或
”是真命题
C.命题“
,
”的否定是“
,
”
D.命题“在
中,若
,则
是钝角三角形”是真命题
【答案】AB
【解析】
由导数的应用可得![]()
,从而命题“
,
”是假命题,
由原命题与逆否命题真假一致可得:
且
,则
,则命题“若
,则
或
”是真命题,
由全称命题的否定可得:命题“
,
”的否定是“
,
”,
由向量的夹角公式可得若
,则
,则B为锐角,从而不能判断
是钝角三角形,即可得解.
解:设
,则
,所以
在
上单调递增,所以
,从而命题“
,
”是假命题,即选项A正确;
若
且
,则
,所以命题“若
,则
或
”是真命题,即选项B正确;
由全称命题的否定可得:命题“
,
”的否定是“
,
”,即选项C是错误的;
在
中,若
,则
,则B为锐角,从而不能判断
是钝角三角形,所以选项D也是错误的.
故选AB.
练习册系列答案
相关题目