题目内容

已知a2+b2=2,若a+b≤|x+1|-|x-2|对任意实数a、b恒成立,则x的取值范围是
[
3
2
,+∞
[
3
2
,+∞
分析:由已知,只需|x+1|-|x-2|大于等于a+b的最大值即可,利用三角换元法可求出a+b的最大值为2.通过解2≤|x+1|-|x-2|即可求出x的取值范围.
解答:解:由已知,只需|x+1|-|x-2|大于等于a+b的最大值即可.
由于a2+b2=2,令a=
2
cosθ,b=
2
sinθ,则a+b=
2
(cosθ+sinθ)=2sin(θ+
π
4
),故a+b的最大值为2.
所以2≤|x+1|-|x-2|.可以化为下面的三个不等式组
x≤-1
-(x+1)+(x-2)≥2
,此时无解
-1<x<2
(x+1)+(x-2)≥2
,解得
3
2
≤x<2

x≥2
(x+1)-(x-2)≥2
,解得x≥2
综上所述,x的取值范围是[
3
2
,2)∪[2,+∞)=[
3
2
,+∞

故答案为:[
3
2
,+∞
点评:本题考查函数恒成立问题,绝对值不等式的解法.考查逻辑思维、计算、分类讨论等思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网