题目内容
已知函数f(x)=xex-ax-1,则关于f(x)的零点叙述正确的是( )
| A.当a=0时,函数f(x)有两个零点 |
| B.函数f(x)必有一个零点是正数 |
| C.当a<0时,函数f(x)有两个零点 |
| D.当a>0时,函数f(x)有一个零点 |
∵f(x)=xex-ax-1,
∴f′(x)=xex+ex-a
若a=0,则f′(x)=xex+ex,
令f′(x)=0则x=-1
∵x>-1,f′(x)>0
x<-1,f′(x)<0
所以函数在(-1,+∞)上是增函数,在(-∞,-1)上是减函数,
又f(0)=-1,故函数f(x)在(0,+∞)有一个零点,在(-∞,0)上没有零点,
函数有一个正零点;
又当a≠0时,a<0,有且只有一正零点,a>0两个零点且一正一负两个零点.
故选B.
∴f′(x)=xex+ex-a
若a=0,则f′(x)=xex+ex,
令f′(x)=0则x=-1
∵x>-1,f′(x)>0
x<-1,f′(x)<0
所以函数在(-1,+∞)上是增函数,在(-∞,-1)上是减函数,
又f(0)=-1,故函数f(x)在(0,+∞)有一个零点,在(-∞,0)上没有零点,
函数有一个正零点;
又当a≠0时,a<0,有且只有一正零点,a>0两个零点且一正一负两个零点.
故选B.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|